asymptotic property

渐近性

常用释义

词性释义

渐近性;渐近特性
例句
  • 全部
1·This paper discusses the asymptotic property of the Mid-point of the mean theorem for first form curvilinear integral.
文章研究了第一型曲线积分中值定理“中间点”的渐近性,获得了一些重要结果,得出它也是定积分中值定理相应结果的推广。
2·The proposed model can be derived from the statistical theory of extreme-value, and has a similar asymptotic property to the deterministic Gompertz curve.
该模型来源于极值统计理论,并具有类似于确定性龚帕兹曲线函数的渐近性特性。
3·The main purpose of this paper is to study the asymptotic property about the divisor product and the square residues, and to obtain some interesting asymptotic formulas.
本文的主要目的是研究有关因子积序列和平方剩余的渐近性质,得到有关这两个序列的渐近公式。
4·In this paper we study the asymptotic property of solutions of a class of reaction-diffusion systems including those appearing in the theory of epidemics and combustion.
本文讨论了一类反应扩散方程组解的渐近性质。这类方程组包括传染病理论和燃烧理论中出现的一类方程。
5·This paper firstly proves R-S mean value formula for integral, and USES the supplementary function for further discussing the asymptotic property of the "intermediate point".
本文首先证明了R—S积分中值公式,并利用辅助函数进一步讨论了其“中间点”的渐近性。
6·This formulation possesses an asymptotic strong duality property and guarantees a success for identifying an optimum solution.
此公式具有渐进强对偶的特性并且可以保证找到原问题的最优解。
7·The convergent property and convergent rate of parameter estimation error are analyzed . Some sufficient conditions are given to guarantee the asymptotic normality of parameter estimation error.
分析了离散时间线性系统模型参数估计误差的收敛性和收敛速度,对参数估计误差服从渐近正态分布的一些条件进行了讨论。
8·As corollaries, some asymptotic equipartition property theorems for arbitrary information source, m-order Markov information source, and non-memory information source were obtained.
得出了若干任意信源、m阶马氏信源、无记忆信源的渐进均匀分割性定理,并将已有的关于离散信源的结果进行了推广。
9·In this paper, we study the asymptotic equipartition property (AEP) form order nonhomogeneous Markov information source.
本文研究非齐次m阶马氏信源的渐近均分割性。
10·For a kind of population, the asymptotic best property of trimmed mean is discussed. Then, a expression of the best trimmed estimate of population parameters is given.
首先对一类总体讨论了截尾均值的渐近最优性,然后给出了更一般情形总体参数最优截尾估计的一个表达式。