1·Let S be a right simple right cancellative semigroup.
设S是一个右单纯、右可消的半群。
2·S is a nil-extension of strong semilattice of right semigroup.
为右群强半格的诣零理想扩张。
3·The latter two published a monograph on semigroup theory in 1961.
后面二人在1961年出版了半群理论的专论。
4·We show that all fuzzy congruence relations on a semigroup is a lattice.
证明了一个半群上所有模糊同余关系作成一个格。
5·Accordingly we have weakly almost periodic of point in a bounded C-semigroup.
相应获得了有界c -半群点的弱概周期。
6·The configuration form's semigroup is constructed and it's basic character is proved.
构造出半群的结构式并证明其具有的基本特征。
7·This paper mainly focuses on the study of the translational hull of superabundant semigroup.
本文主要研究超富足半群的平移壳问题。
8·Similar to group graded rings and modules, partial semigroup graded rings and modules are defined.
类似于群分次环和群分次模的定义,定义了部分半群分次环和部分半群分次模。
9·The congruences on a regular semigroup is completely determined by its idempotent congruence classes.
正则半群上的同余是由其幂等元同余类所完全决定的。
10·In this paper, the notation of a strongly ordered congruence on an ordered semigroup s is introduced.
设s是有向序半群,本文给出了S上的一类正则同余,称为强序同余的定义及性质。
1·By using theory of enveloping semigroup, we give a simple proof of an important theorem concerning proximity relations.
运用包络半群的理论,对接近关系中一个重要定理给出了一个简单证明。
2·This paper proves that the localization of an orthodox semigroup at the semilattice of idempotences exists and is unique which is the maximum group homomorphism image.
本文证明了纯正么半群在其幂等元带上的局部化存在唯一,且证明了它是其最大群同态象。
3·By the methods of operator semigroup and apriori estimates, the existence and uniqueness of the global weak solution and the global strong solution for the system are obtained.
利用算子半群方法和先验估计,证明了该问题整体弱解和整体强解的存在唯一性。
4·In this paper, the greatest idempotent separating congruence and the minimum group congruence on a weakly inverse semigroup s are characterized.
刻画了弱逆半群s上的最大幂等元分离同余和最小群同余。
5·This thesis is mainly devoted to study an abundant semigroup with a quasi-adequate transversal.
本文主要研究具有拟恰当断面的富足半群。