partial derivatives

偏导数:多元函数中对其中一个变量求导数时

常用释义

词性释义

偏导数:多元函数中对其中一个变量求导数时,将其他变量视为常数而进行的求导运算。
例句
  • 全部
而一个偏微分方程就是,函数各个偏导之间的联系,看看。
You don't need to bring a ruler to estimate partial derivatives the way that this problem asks you to.
你们不需要像这道题一样,用尺子去表示出偏导来。
偏微分方程就是,跟函数各个偏导数有关的方程。
So, we've learned about differentials and chain rules, which are a way of repackaging these partial derivatives.
我们还学过微分的链式法则,也就是用其他量来代替这些偏导数。
希望你们大致记得,这是关于多元函数及其偏导的。
In particular, the directional derivatives in the direction of I hat or j hat are just the usual partial derivatives.
特别地,在i,j方向的方向导数是,一般的偏导数。
So the unknown is a function, and the equation will relate the partial derivatives of that function to each other.
未知量是一个函数,这个方程,将把函数的偏导数联系起来。
So, critical points, remember, are the points where all the partial derivatives are zero.
临界点是,偏导数都为零的点。
So, now, the next thing that we've learned about is partial derivatives.
然后是我们学过的偏导。
That's just the fact that the mixed second partial derivatives are equal.
这可以说明,二阶混合偏导数与次序无关。
Another method for proving the three thermodynamical partial derivatives equaling chemical potential is given.
对三个热力学偏导数等于系统化学势给出了又一种证明方法。
我们也知道了,如何将各个偏导组合成一个梯度向量。
这意味着,不管放什么进去,都会包括一阶偏导。
因此,我们应该重新理解偏导数的含义。
Why do we like partial derivatives?
为什么我们偏爱偏微分呢?
These guys are functions so they count as numbers, but these are vectors and these are partial derivatives.
这些是函数,因此可以当作数来计算,但是这些是向量,这些是偏微分。
What we would start doing immediately is taking the partial derivatives. What is f sub x?
我们首先要做的事是,求偏导数,fx是多少?
So, in fact, I claim you already know how to take partial derivatives.
你们之前应该已经知道,怎么去计算偏导。
One thing I should mention is this problem asks you to estimate partial derivatives by writing a contour plot.
这个问题要求你,通过等高线来表示偏导。
Generally, you would want all the partial derivatives, 0 no matter how many variables you have, to be zero at the same time.
通常情况下,所有的偏导数—,无论有多少个自变量——都同时为。
之后,又学会了怎样应用梯度向量和偏导,从而得到一些结论,例如函数的近似式。
For example, if we have a function of three variables, the vector whose components are the partial derivatives.
例如我们有一个三元函数,它的梯度向量的分量就是那些偏导数。
多元函数连续、偏导数存在和可微的概念及三者之间的关系;
Mathematically, the MPPs are given by the partial derivatives of the production function. Thus,
数学上,这些边际产量是生产函数的偏导数,
封闭系统热力学函数偏微商的推证
热力学函数偏微商推证法的探讨
热力学偏微商的直接推证法
含高阶偏导函数的泛函的奥氏方程组
偏导的意义?边际价格
一种基于偏导数的滤波算法
同义词
偏导数;偏微分;偏导函数