1·It also discusses the primary processing and recognition diagram of SVM applied to face recognition.
还讨论支持向量机用于人脸识别的主要处理流程和识别框图。
2·Then, we implement classification modeling and forecast based on SVM.
然后基于支持向量机进行分类建模和预测过程。
3·Experiments show that the method reflects the features of human faces very well and using SVM to classify profile features is an effective method for detecting human face.
实验表明:轮廓特征能较好的反映人的脸部特征,用支持向量机对轮廓特征进行分类的方法来检测人脸是有效的。
4·Then, we realize classification modeling and forecasting test based on SVM.
然后基于支持向量机进行分类建模和预测。
5·SVM can deal with nonlinear problems in classification and Regression easily by using kernel functions.
通过引入核函数,支持向量机可以很容易地实现非线性算法。