1·The derivative nonlinear Schrodinger equation (DNLSE) is an integrable equation of many physical applications.
微商非线性薛定谔方程(DNLSE)是有众多物理应用的可积方程。
2·In chapter one, we give a brief introduction to the Hamiltonian method of integrable system.
本文第一章介绍可积系统的哈密顿方法。
3·It is often bilinear form for those integrable systems.
对于其中的可积系统,往往是双线性形式。
4·The four basic properties of mixed integrals for the continuous square integrable strong martingales are applied further to continuous martingales with orthogonal increments.
对连续的平方可积强鞅的混合积分的四个基本性质推广到对连续的正交增量鞅的混合积分的情形。
5·Chapter 1, we briefly introduce the near integrable systems and ist developments and the main results in this paper.
第一章是本文综述部分,简要介绍了近可积系统的前沿现状和本文所做工作。